180 research outputs found

    Single-species fragmentation: the role of density-dependent feedbacks

    Full text link
    Internal feedbacks are commonly present in biological populations and can play a crucial role in the emergence of collective behavior. We consider a generalization of Fisher-KPP equation to describe the temporal evolution of the distribution of a single-species population. This equation includes the elementary processes of random motion, reproduction and, importantly, nonlocal interspecific competition, which introduces a spatial scale of interaction. Furthermore, we take into account feedback mechanisms in diffusion and growth processes, mimicked through density-dependencies controlled by exponents ν\nu and μ\mu, respectively. These feedbacks include, for instance, anomalous diffusion, reaction to overcrowding or to rarefaction of the population, as well as Allee-like effects. We report that, depending on the dynamics in place, the population can self-organize splitting into disconnected sub-populations, in the absence of environment constraints. Through extensive numerical simulations, we investigate the temporal evolution and stationary features of the population distribution in the one-dimensional case. We discuss the crucial role that density-dependency has on pattern formation, particularly on fragmentation, which can bring important consequences to processes such as epidemic spread and speciation

    Nitrogen and potassium fertilization on the yield and intensity of the maize white spot.

    Get PDF
    ABSTRACT - A plant’s nutritional balance can influence its resistance to diseases. In order to evaluate the effect of increasing doses of N and K on the yield and severity of the maize white spot, two experiments were installed in the field, one in the city of Ijaci, Minas Gerais, and the other in the city of Sete Lagoas, Minas Gerais. The experimental delimitation was in randomized blocks with 5 x 5 factorial analysis of variance, and four repetitions. The treatments consisted of five doses of N (20; 40; 80; 150; 190 Kg ha-1 of N in the experiments 1 and 2) and five doses of K (15; 30; 60; 120; 180 Kg ha-1 of K in experiment 1 and 8.75; 17.5; 35; 50; 100 Kg ha-1 of K in experiment 2). The susceptible cultivar 30P70 was planted in both experiments. The plot consisted of four rows 5 meters long, with a useful area consisting of two central rows 3 meters each. Evaluations began 43 days after emergence (DAE) in the first experiment and 56 DAE in the second one. There was no significant interaction between doses of N and K and the disease progress. The effect was only observed for N. The K did not influence the yield and the severity of the disease in these experiments. Bigger areas below the severity progress curve of the white spot and better yield were observed with increasing doses of N. Thus, with increasing doses of N, the white spot increased and also did the yield. RESUMO - O equilíbrio nutricional de plantas pode influenciar a resistência a doenças. Com o objetivo de avaliar o efeito de doses crescentes de N e de K na produtividade e na severidade da mancha branca do milho, foram instalados em campo, dois experimentos, um em Ijaci, MG e o outro em Sete Lagoas, MG. O delineamento experimental foi em blocos casualizados com esquema de análise de variância fatorial 5 x 5 e quatro repetições. Os tratamentos consistiram de 5 doses de N (20; 40; 80; 150; 190 Kg ha-1 de N nos experimentos 1 e 2) e de 5 doses de K (15; 30; 60; 120; 180 Kg ha-1 de K no experimento 1 e 8,75; 17,5; 35; 50; 100 Kg ha-1 de K no experimento 2). Foi plantado nos dois experimentos o cultivar suscetível 30P70. As parcelas foram constituídas de quatro fileiras de 5 m de comprimento, sendo a área útil composta por duas linhas centrais com 3 m cada. As avaliações iniciaram-se aos 43 dias após emergência (DAE) no primeiro e aos 56 DAE, no segundo experimento. Não houve interação significativa entre as doses de N e de K e o progresso da doença. O efeito foi observado apenas para o N. O K não influenciou a produtividade e a severidade da doença nesses experimentos. Observaram-se maiores áreas abaixo da curva de progresso da severidade da mancha branca e maior produtividade com o aumento das doses de N. Sendo assim, com o aumento das doses de N houve aumento da mancha branca do milho e também da produtividade

    The MADS-box gene Agamous-like 11 is essential for seed morphogenesis in grapevine.

    Get PDF
    Despite the wide appreciation of seedless grapes, little is known about the molecular mechanisms that drive the stenospermocarpic seedless-type phenotype in grapevine. In order to address the molecular mechanisms that control seedlessness in grapevine, our study aimed to characterize VviAGL11, a class D MADS-box transcription factor gene that has been proposed as the major candidate gene involved in Vitis vinifera seed morphogenesis. VviAGL11 allelic variations in seeded and seedless grapevine cultivars were determined, and its correlations with allele-specific steady-state mRNA levels were investigated. VviAGL11 relative expression was significantly higher in seeds at 2, 4, and 6 weeks after fruit set, whereas in the seedless grape its transcript levels were extremely low in all stages analyzed. In situ hybridization revealed transcript accumulation specifically in the dual endotesta layer of the seeds, which is responsible for elongation and an increase of cell number, a necessary step to determine the lignification and the final seed size. No hybridization signals were visible in the seedless grapevine tissues, and a morphoanatomical analysis showed an apparent loss of identity of the endotesta layer of the seed traces. Ectopic expression of VviAGL11 in the Arabidopsis SEEDSTICK mutant background restored the wild-type phenotype and confirmed the direct role of VviAGL11 in seed morphogenesis, suggesting that depletion of its expression is responsible for the erroneous development of a highly essential seed layer, therefore culminating in the typical apirenic phenotype. Key words: Apireny, grapevine, in situ hybridization, seedlessness, Sultanine, VviAGL11

    Polymer/layered silicate nanocomposite as matrix for bioinsecticide formulation.

    Get PDF
    Due to current encouragement to the use of bioinsecticides for pest control and the susceptibility of biological agents to external factors, we investigated the use of a polymer nanocomposite (PLN, polymer/ layered silicate nanocomposite) as matrix to encapsulate an entomopathogenic fungus active against pest insects of palm trees. The beads were formed by extrusion and the following variables were assessed: fungus conidial concentration (series 1: 107; series 2: 108 and series 3:109 conidia/mL) and nanolayered silicate concentration (0; 0.5; 1; 2 and 4%). The matrix was evaluated by X-ray powder diffraction and Fourier transform infrared spectroscopy and the following characteristics of the products were assessed: percent of encapsulated conidia, size distribution and polydispersity index, swelling index, formulation?s in vitro ability to release conidia and stability under different storage temperatures. PLN, whose interactions could be visualized by FTIR, proved to be a potential matrix for this fungus, because, while composed by natural substances non-toxic to the environment, it succeeded to encapsulate high amounts of conidia (series 2). A barrier effect with bentonite increase was also demonstrated by increased fungus germination time and thermal stability

    SCI1 Is a Direct Target of AGAMOUS and WUSCHEL and Is Specifically Expressed in the Floral Meristematic Cells

    Get PDF
    The specified floral meristem will develop a pre-established number of floral organs and, thus, terminate the floral meristematic cells. The floral meristematic pool of cells is controlled, among some others, by WUSCHEL (WUS) and AGAMOUS (AG) transcription factors (TFs). Here, we demonstrate that the SCI1 (Stigma/style cell-cycle inhibitor 1) gene, a cell proliferation regulator, starts to be expressed since the floral meristem specification of Nicotiana tabacum and is expressed in all floral meristematic cells. Its expression is higher in the floral meristem and the organs being specified, and then it decreases from outside to inside whorls when the organs are differentiating. SCI1 is co-expressed with N. tabacum WUSCHEL (NtWUS) in the floral meristem and the whorl primordia at very early developmental stages. Later in development, SCI1 is co-expressed with NAG1 (N. tabacum AG) in the floral meristem and specialized tissues of the pistil. In silico analyses identified cis-regulatory elements for these TFs in the SCI1 genomic sequence. Yeast one-hybrid and electrophoresis mobility shift assay demonstrated that both TFs interact with the SCI1 promoter sequence. Additionally, the luciferase activity assay showed that NAG1 clearly activates SCI1 expression, while NtWUS could not do so. Taken together, our results suggest that during floral development, the spatiotemporal regulation of SCI1 by NtWUS and NAG1 may result in the maintenance or termination of proliferative cells in the floral meristem, respectively

    Molecular anatomy of seedlessness in grapevine: the role of VvAGL11 during seed morphogenesis.

    Get PDF
    XV Congresso Latino-Americano de Viticultura e Enologia E XIII Congresso Brasileiro de Viticultura e Enologia. Bento Gonçalves-RS, 3 a 7 de Novembro de 2015
    • …
    corecore